PREPARATION OF ALKYL- AND PHENYL-SUBSILITUTED PYRIMIDINES

A. García Martínez*^a, A. Herrera Fernández^a, R. Martínez Alvarez^a, E. Teso Vilar^b, A. García Fraile^b, J. Osío Barcina^a and L. Pargada Iglesias^a.

^aDepartamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain. ^bDepartamento de Química Orgánica, Facultad de Ciencias, UNED, E-28040 Madrid, Spain.

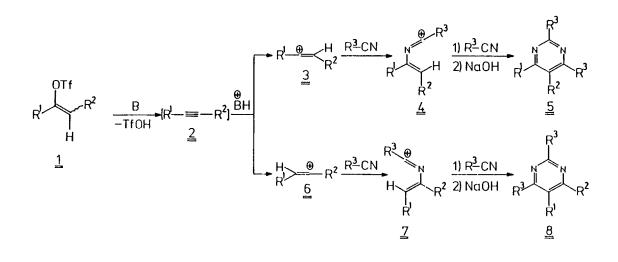
<u>Abstract</u>.- Vinyltrifluoromethanesulfonates (triflates) $\begin{array}{c} IfO\\ R^{1} \rightarrow C = C \swarrow R^{2} \\ I \\ M \end{array}$, which are obtained from the corresponding ketones, react in an excess of pure nitriles (acetonitrile, propionitrile, benzonitrile) at 80°C (20h) to form substituted pyrimidines 5 and 8 in good yields.

Tri and tetrasubstituted pyrimidines are an important class of compounds which have been widely used as drugs¹⁾, flavours²⁾, herbizides³⁾ and liquid cristals³⁾. The syntheses of substituted pyrimidines $\frac{5}{2}$ and $\frac{8}{2}$ known so far are often somewhat complicated⁴⁾ or restricted to such systems which are partly substituted with aromatic groups³⁾.

We report now a new and simple procedure for the synthesis of substituted py rimidines $\frac{5}{2}$ and $\frac{8}{2}$: Z/E-isomeric vinyltriflates $\frac{1}{2}$ (R¹=alkyl, aryl; R²=H, alkyl) (20 mmol) are treated with an excess of pure alkyl- or arylcyanide R³-CN (R³=alkyl, aryl) (0.1 mol) at 80°C for 20 h to form the substituted pyrimidines $\frac{5}{2}$ or $\frac{8}{2}$ in yields of 54-71%. (Examples: see Table 1).

If Z/E-triflates 1, with R^1 =alkyl and R^2 =H are used only uniformly substituted pyrimidines 5 are obtained. The pyrimidines 5 are isolated after removal of the excess nitrile by distillation, washing the residue with 10% NaOH solution and extraction with methylene chloride. If triflates 1 are used in which $R^1 \neq R^2 \neq$ H, then a mixture of two isomeric pyrimidines 5 and 8 is formed, which however can be separated by column chromatography. All triflates $\underline{1}$ are obtained in high yield by the reaction of the appropriate ketone with trifluoromethanesulfonic anhydride (Tf₂O) and sodium carbonate in methylene chloride^{5,6)}.

The pyrimidines 5 and 8 listed in Table 1 were characterized by IR, $^{13}C_{-}^{-1}H_{-}$ -NMR, MS and elemental analysis.


<u>Table 1</u>

Yield^b b.p.[°C]/torr (%) or m.p.[°C] Triflate Products Nitrile $R^3 - CN$ 1 (E/Z-ratio)^a <u>5</u> a R^{1} R^{2} R^3 <u>1a t</u>-C₄H₉ H 61-62/4.5 сн, 56 <u>5a</u> <u>1a t</u>-C₄H₉ H С₂Н₅ 74-76/4.0 54 <u>5b</u> 83-843) ^C6^H5 <u>la t</u>-C₄H₉ <u>5c</u> 65 Н CH3 95-96/0.7 <u>1b</u> C₆H₅ <u>5 d</u> 71 н с₂н₅ 86-88/0.1 <u>16</u> C2H5 н <u>5 e</u> 70 184-185³⁾ С₆Н₅ <u>1ь</u> С_КН₅ <u>5 f</u> 75 Н $\frac{1c}{2} \underline{i} - C_4 H_9 \underline{i} - C_3 H_7 CH_3$ 71-73/1.0 5g(56%) 8g(44%) 71 (72/28) $\underline{1c} \underline{i} - \underline{C}_{4}H_{9} \underline{i} - \underline{C}_{3}H_{7} \underline{C}_{2}H_{5}$ <u>5h(</u>56%) <u>8h</u>(44%) 70 93-94/2.0 (72/28)

^aDetermined by G.L.C. (OV-101, 25m, 80ºC). ^bOf isolated product.

^CRecristallized from EtOH.

The formation of two isomeric pyrimidines $5g_{\pm}h$ and $8g_{\pm}h$ from triflates 1c leads us to propose the following mechanism: (Scheme 1)

Scheme 1

In the first step the triflates $\frac{1}{2}$ form the alkynes $\frac{2}{2}$ by elimination of TfOH, the excess nitrile serving as a weak base. By protonation of the alkynes $\frac{2}{2}$ the vinyl cations $\frac{3}{2}$ and $\frac{6}{2}$ are obtained which react with two mol of nitrile R³-CN via $\frac{4}{2}$ and $\frac{7}{2}$ respectively to form the pyrimidines $\frac{5}{2}$ and $\frac{8}{2}$.

As has been shown recently, such nitriles, which do not contain hydrogen atoms in the α -position, can be reacted with alkynes in presence of phosphoric acid and BF₃ to yield pyrimidines³⁾. The synthesis of substituted pyrimidines using our method is not restricted to certain substituents and common available ketones, which are easily transformed into the corresponding triflates 1/2, are used as starting materials.

Financial support of the VW-foundation is gratefully acknowledged. We thank Prof. M. Hanack, University of Tübingen (Federal Republic of Germany) for helpful discussions. 1932

References.-

- 1.- A. Kreutzberger, M. Sellheim, <u>Chem. Ztg.</u>, <u>108</u>, 326 (1984); C.A., <u>102</u>. 24572 p.
- 2.- R. Przybylski, E. Kaminski, <u>Nahrung</u>, <u>27</u>, 487 (1983); C.A., <u>99</u>, 86878 w.
- 3.- Ali-Akbar, <u>Ger. Offen.</u>, DE 3319843 A1 (1984); C. A., <u>102</u>, 95667 j.
- 4.- F. Krönke, E. Schmidt, W. Zecher, <u>Chem. Ber.</u>, <u>97</u>, 1163 (1964).
- 5.- P. J. Stang, M. Hanack, L. R. Subramanian, Synthesis, 85 (1982).
- 5.- C. J. Collins, A. García Martínez, R. Martínez Alvarez, J. Arranz Aguirre, <u>Chem. Ber.</u>, <u>117</u>, 2815 (1984).

(Received in UK 3 March 1987)